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Abstract Bacterial activity on pesticides can lead to

decreased toxicity or persistence in aquatic systems. Rhi-

zosphere activity is difficult to measure in situ. To mimic

rhizosphere properties of the soft rush, Juncus effusus, a

single-stage gradostat reactor was developed to study

cycling of lambda-cyhalothrin by rhizobacteria and the

effects of Fe(III) and citrate, both common in wetland soil,

on lambda-cyhalothrin degradation. Redox gradient chan-

ges, greater than ±10 mV, were apparent within days 5–15

both in the presence and absence of ferric citrate. Through

the production of a redox gradient (p \ 0.05) by rhizo-

bacteria and the ability to measure pesticide loss over time

(p \ 0.05), reactors were useful in expanding knowledge

on this active environment.
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Synthetic pyrethroids such as lambda-cyhalothrin are

commonly used in the southern United States to control

cotton insect pests, have very low water solubility and an

affinity to solid surfaces. As a result, they are moderately

persistent in soils, especially in those with large amounts of

organic matter. During storm or irrigation runoff events,

these bound residues may be transported from the field into

subsequent aquatic receiving systems. Such action is det-

rimental to both vertebrates and invertebrates in aquatic

ecosystems (Bennett et al. 2005; Budd et al. 2007; Werner

et al. 2010). Researchers have focused on a variety of best

management practices that can be implemented to mitigate

potential negative impacts to receiving aquatic systems.

Use of aquatic plants, such as the soft rush Juncus effusus,

in conjunction with drainage ditches as filters has been

investigated to prevent runoff contamination of surface

waters (Moore et al. 2001; Bennett et al. 2005). While this

particular practice has demonstrated success, few studies

have examined the effect rhizosphere microbial commu-

nities have on the fate of synthetic pyrethroids, such as

lambda-cyhalothrin.

Considering the strong affinity of lambda-cyhalothrin to

solid surfaces (He et al. 2008), this study emphasized

bacterial action on lambda-cyhalothrin present within the

rhizosphere of the soft rush, J. effusus, a prominent aquatic

emergent plant.

Pesticide effects on soil microbial communities have

been extensively studied (Imfeld and Vuilleumier 2012).

The current study took the opposite approach by asking

what effect bacterial communities have on the presence of

pesticides around plants. Typically dominated by a Gram-

negative microbial community, the rhizosphere is an area of

increased microbial activity and biomass of plants (Morgan

et al. 2005). Anderson et al. (1994) reported 4.2 9 105

microbial constituents in rhizosphere soil, but an order of

magnitude fewer microbial constituents (3.5 9 104) were

present in non-vegetated soil. This study also observed

enhanced herbicide (atrazine, metolachlor, and trifluralin)

degradation in the rhizosphere (Anderson et al. 1994).
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Xenobiotic degradation within the plant rhizosphere is

generally attributed to the presence of a microbial consor-

tium, rather than one particular microbial member (Gilbert

et al. 2003).

In an effort to assess the loss of lambda-cyhalothrin as a

result of bacterial activity within the rhizosphere, biore-

actor system methodology was investigated. Bioreactors

have been constructed to assess rhizosphere and rhizo-

bacteria associations concerning nitrogen fixation reactions

and degradation of organophosphate insecticides (Fritzsche

and Niemann 1990; Wimpenny et al. 1992; Ueckert et al.

1995). The primary devices utilized in these studies were

the gradostat and bioreactor flasks. Gradostats were con-

structed as a series of in-line chemostats with bidirectional

pumps that fed different nutrient types, ultimately resulting

in a nutrient gradient. A simpler system was later devel-

oped and termed the directly coupled gradostat; designed to

study growth in chemical gradients (Wimpenny et al.

1992). In the current study, a modified gradostat was

constructed that retained only the ability to create a gra-

dient (i.e. nutrient, redox).

In nature, Fe(III) is a common electron acceptor in

subsurface and aquatic environments with an important

role in redox gradient formation by oxidizing organics and

subsequently being reduced to Fe(II). In conjunction with

the prevalence of Fe(III) in subsurface environments (i.e.

wetlands), citrate is a common wetland plant exudate that

can serve as a carbon source for microorganisms inhabiting

rhizoplane and rhizosphere environments (Kamilova et al.

2006). As a result, this study also examines the influence,

of ferric citrate upon the biodegradation of lambda-cyhal-

othrin via a co-metabolic affect (Hazen 2010).

Materials and Methods

The modified gradostat used a closed system with both a

single reservoir and a single discharge end, creating a one-

way flow-through system (Fig. 1). Media flow was gravi-

metrically controlled. A solid inert matrix was used to

simulate surrounding soil and root surface for adhesion

interactions. Instead of imposing superficial gradients upon

the system, rhizobacteria were allowed to impose their own

redox gradients based upon their ability to biochemically

cycle lambda-cyhalothrin as their only carbon source and

in the presence of ferric citrate.

Chromaflex low-pressure chromatography columns

(three, 60 cm length 9 2.5 cm I.D., Kontes Glass Co.)

with 11 custom-made 6.35 mm holes at 5 cm apart the

length of the columns were used as the reactor. Teflon-

faced butyl septa (13 9 6.35 mm Kimble Glass Inc.), were

placed in each of the eleven column holes and used as

sampling locations. Column tops and bottoms were sealed

with the following fittings (after being autoclaved with the

matrix inside the column): two screw end caps (2.5 cm

I.D., Kontes Glass Company), two Teflon end fittings

(2.5 cm OD, Kontes Glass Company), two Teflon bed

supports (20 lm fritted discs Kontes Glass Company), two

Teflon reducer fittings (Kontes Glass Company), two Tef-

lon nut line fittings (Kontes Glass Company), two line

ferrules (Kontes Glass Company), and two, 3.05 m lengths

of Teflon tubing (Kontes Glass Company). Mystic White

quartz sand (#90 fine sand, New England Silica Inc., CT)

was used as reactor matrix due to its low fluorescing

properties and inertness. Sand was used to fill the column

to the neck resulting in a headspace of approximately

1.5 cm when columns were fully assembled. Three-way

valves (Cole-Parmer) with male luer lock connections were

spliced into Teflon tubing leading into and out of reactors.

The top valve was used to inoculate the column aseptically

by closing off the feed media line and injecting 10 mL of

inoculum onto the top of the reactor matrix via a 10 mL

sterile syringe (Becton–Dickinson) with a female luer lock

connection. Fluorinated 18-L NalgeneTM carboy lids were

fitted with a 1/4-28 Teflon nut line fitting from Kontes to

Fig. 1 Diagram of a single-stage redox gradostat reactor

348 Bull Environ Contam Toxicol (2014) 92:347–351

123



accommodate 1/8 OD Teflon line, enabling the carboy lids

to remain sealed. Carboys were then placed at a height of

40 cm and the reactor was clamped onto a ring stand with

three-finger clamps. The bottom three-way valve at the

effluent end was used to control reactor flow rate.

Minimal media for enrichment was a mixture of a

mineral salt stock consisting of 20 mM NH4Cl and 2 mM

KH2PO4 buffered to pH of 7 with 20 mM HEPES, a

modified Hutner’s mineral base, and 5 % lambda-cyhal-

othrin (KarateTM, Syngenta Technologies, 13.1 % active

ingredient) in ethanol. Final prepared media contained

6.7 lL of sterile mineral salt stock, 1 lL of filter sterilized

(Sterile Acrodisc, 0.2 lm, Pall-Gelman), 5 % lambda-cy-

halothrin (3.82 mL of 0.131 g mL-1 lambda-cyhalothrin in

6.18 mL of 1 % ethanol), and 10 mL of standard sterile

mineral base stock. Solution components were prepared per

liter with sterile deionized water. Liquid enrichment media

was so that one carboy contained modified Hutners mineral

base with 0.111 lM lambda-cyhalothrin and one carboy

contained 5 mM ferric citrate FeC6H5O7�5H2O (Sigma),

modified Hutners mineral base and 0.111 lM lambda-

cyhalothrin. Before addition of lambda-cyhalothrin, all

carboys were autoclaved for 3 h and sterile media was

allowed to flow through the column to saturation for 24 h.

Solid media, 18 g L-1 of Noble Agar (Difco Media) was

added to liquid enrichment media as prepared above and

sterilized. Lambda-cyhalothrin, 0.111 lM, was added to

cooled sterilized media, and enrichment plates were poured

and allowed to cure at room temperature for 24 h before

subculturing using primary enrichment culture isolates.

Final inoculum density was 0.1 optimal density (OD) in a

10 mL inoculum volume.

The column was then drained to determine void volume,

110 mL, and 10 % of this volume was used to inoculate the

column. Flow rate was reestablished to an initial rate of

0.52 mL min-1 and checked every third day to ensure

consistency. Before inoculation, the three-way valve was

closed at the effluent end. Samples from each gradostat

port, 1–11, were taken daily for a period of 30 days and

redox potential (mV) measured in triplicate using a Corn-

ing combination redox (mV), temperature (�C) probe with

meter equipped with a 10 mL syringe. Samples were then

injected into 1 mL auto-sampler vials for extraction and

analysis of lambda-cyhalothrin using the method outlined

by Bennett et al. (2000). Statistical analysis was performed

using ANOVA single factor within the Microsoft Excel

statistical analysis package.

Results and Discussion

Changes in redox potential (mV) were detected through the

course of the experiment in all reactors. The first significant

(p \ 0.05), changes in redox (greater than ±10 mV),

occurred between days 5 and 15 (Tables 1, 2).

Production of a redox gradient within the rhizosphere

microenvironment is a measure of metabolic activity (Fritzsche

and Niemann 1990; Morgan et al. 2005). Production and

reduction of redox potential (mV) within a system suggests

biotic activity upon a variety of substrates. Data suggest rhi-

zosphere microbial flora are capable of biochemically cycling

lambda-cyhalothrin as a sole carbon source (Table 1). Natural

assemblages’ ability to produce a redox gradient within the

reactor suggests their ability to utilize lambda-cyhalothrin as an

electron donor (no other carbon/electron donor was furnished

with the minimal medium) and create a gradient (n = 25,

p\0.05). Likewise, it would support microbes at different

depths (per port number) as expected in actual rhizosphere

niches supported by a variety of gradients including redox. Loss

of extractable lambda-cyhalothrin from within the column is

additional evidence that production of the redox gradient is a

result of lambda-cyhalothrin utilization as a sole source of

carbon and electrons. Results agree with Meyer et al. (2013),

who utilized soil slurries in batch culture and observed

approximately 45 % loss of compound in 28 days. However,

Meyer et al. (2013) used whole soil, which can introduce abiotic

factors that influence accessibility of lambda-cyhalothrin to

metabolism (Sukul and Spiteller 2001). Additionally, use of

whole soil may introduce soil organic matter and electron

acceptors, which influence metabolic activity of the microor-

ganisms present. This is a plausible explanation of the observed

differences in percentages of lambda-cyhalothrin lost.

Alternate electron acceptors such as Fe(III) are key to the

biodegradation of many anthropogenics, including agricul-

tural chemicals, and there exists a relationship between

organic carbon oxidation and subsequent reduction of Fe(III)

(Nealson and Saffarini 1994). With the prevalence of Fe(III)

in many types of aquatic and subsurface environments, the

oxidation of organics, both natural and anthropogenic, have

the potential to be coupled to Fe(III) reduction, which has

been shown in the bioremediation of organic contaminants

including aromatic hydrocarbons and pesticides (Cozarelli

et al. 1995; Chang et al. 1998; Lovely and Anderson 2000).

The production of a variety of exudates, such as the organic

Table 1 Gradostat I with redox potentials (mV) at central ports over

time (days) without addition of ferric citrate and with 50 lg L-1

lambda-cyhalothrin at pH 6.8

Day Port 1 (mV)

5 cm depth

Port 6 (mV)

30 cm depth

Port 11 (mV)

55 cm depth

5 256 240 244

10 231 206 185

15 -9.30 1.60 -1.60

20 -2.20 1.30 1.50

26 1.80 0.40 0.30
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acid citrate, produced by the plants and excreted into the

rhizosphere could potentially serve as an alternate electron

donor and increase the degradation rate of anthropogenics

(Chang et al. 1998; Singh et al. 1999; Luu and Ramsay 2003).

While anthropogenics may not serve as the sole source of

carbon and electrons, they could potentially be degraded

through co-metabolism via the degradation of citrate (Chang

et al. 1998; Singh et al. 1999). The production of redox

gradients in the presence of ferric citrate and corresponding

pesticide degradation (Table 2) demonstrate the capacity of

the isolates to produce a redox gradient (n = 31, p \ 0.05)

that is concomitant with degradation. Similar results, dem-

onstrated by Meyer et al. (2013), also suggest this relation-

ship as the redox values in differing sediments correlates to

loss of pesticides, including lambda-cyhalothrin, over time.

The current study offers further evidence of the importance

of microbially-mediated pesticide remediation in the rhizo-

sphere of vegetation. With this knowledge, science can begin

to target more efficient and effective remediation practices.
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